If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50^2=4x^2+3x^2
We move all terms to the left:
50^2-(4x^2+3x^2)=0
We add all the numbers together, and all the variables
-(4x^2+3x^2)+2500=0
We get rid of parentheses
-4x^2-3x^2+2500=0
We add all the numbers together, and all the variables
-7x^2+2500=0
a = -7; b = 0; c = +2500;
Δ = b2-4ac
Δ = 02-4·(-7)·2500
Δ = 70000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{70000}=\sqrt{10000*7}=\sqrt{10000}*\sqrt{7}=100\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{7}}{2*-7}=\frac{0-100\sqrt{7}}{-14} =-\frac{100\sqrt{7}}{-14} =-\frac{50\sqrt{7}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{7}}{2*-7}=\frac{0+100\sqrt{7}}{-14} =\frac{100\sqrt{7}}{-14} =\frac{50\sqrt{7}}{-7} $
| 50^2=7x^2 | | (2x+1)/2.5=x | | 8t2-80t-5=0 | | 2500=7x^2 | | 15x+10=11x-6 | | 15x+10=11x+6 | | q/6=14 | | 0.3x+4=-26 | | 5x-15=-5(x-4) | | 0=3x-4=5 | | 2x-10=×^2+25 | | 2x-10=×^2+15 | | 0=1.2x+6 | | 0=-4.9t^2+10t+8 | | V(t)=29900(0.91)^t | | 48x(.)=240 | | 3(2y)+5y=33 | | Y=14x+155 | | 7−–j=17 | | 7x+4=9x-5;3 | | 7x-6+7x-6=6x+4 | | 4(x)=5x-11 | | X^2-30x+(5000/x)=0 | | X^3-30x^2+5000=0 | | t²+2t=0 | | .4=x-270000/x | | 5(x+-5)=-50 | | 8=-8+3a | | 3^(4x)=9^(3x+7) | | -2=-5x-7 | | 7=(x+-8) | | 3(x+4)=17.4. |